Equation Discovery for Nonlinear System Identification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuro-fuzzy methods for nonlinear system identification

Most processes in industry are characterized by nonlinear and time-varying behavior. Nonlinear system identification is becoming an important tool which can be used to improve control performance and achieve robust fault-tolerant behavior. Among the different nonlinear identification techniques, methods based on neuro-fuzzy models are gradually becoming established not only in the academia but ...

متن کامل

Data for benchmarking in nonlinear system identification

System identification is a fundamentally experimental field of science in that it deals with modeling of system dynamics using measured data. Despite this fact many algorithms and theoretical results are only tested with simulations at the time of publication. One reason for this may be a lack of easily available live data. This paper therefore presents three sets of data, suitable for developm...

متن کامل

The Clustering Algorithm for Nonlinear System Identification

A new on-line clustering fuzzy neural network is proposed. In the algorithm, structure and parameter learning are updated at the same time. There is not difference between structure learning and parameter learning. It generates groups with a given radius. The center is updated in order to get that the center is near to the incoming data in each iteration, in this way, It does not need to genera...

متن کامل

Model-based Algorithms for Nonlinear System Identification

In this thesis three algorithms for the estimation of parameters which occur nonlinearly in dynamic systems are presented. The first algorithm pertains to systems in discrete-time regression form. It is shown that the task of finding an update law for the parameter estimates can be solved numerically by the formulation of a quadratic programming problem. The algorithm does not depend on analyti...

متن کامل

Kernel Based Learning for Nonlinear System Identification

In this paper, an efficient Kernel based algorithm is developed with application in nonlinear system identification. Kernel adaptive filters are famous for their universal approximation property with Gaussian kernel, and online learning capabilities. The proposed adaptive step-size KLMS (ASS-KLMS) algorithm can exhibit universal approximation capability, irrespective of the choice of reproducin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2972076